

LBL Superconducting Magnet Program for SC Accelerator Magnet Workshop

MAGNET ENGINEERING, FABRICATION and ASSEMBLY

Engineering Design Philosophy

- ☐ An R&D SC magnet can be fully engineered and cost effective.
- As part of our R&D effort we <u>develop</u> integrated "tools".
 - ☐ Coil CAD model generator
 - ☐ Links between CAD software to Structural and Field Analysis Codes
- Having incorporated such "tools" into our design process, we are building more structurally sound and magnetically predictable magnets in less time.

Engineering and Analysis

BERKELEY LAB

Superconducting Magnet Program

Magnet Structure based on 3D Coil Model

Complete coil CAD model

Structure is designed around coil surfaces

Layer-to-Layer Transition Designs

BERKELEY LAB

Superconducting Magnet Program

Design Enhancements

Design Enhancements

RD-3 Coil Module
Pre-stressing

RD-3 Coil Module Skinned

Subscale Coil Module

BERKELEY LAB

Superconducting Magnet Program

Bladder & Key Technology

SCALE : 0.100 TYPE : ASSEM NAME : RD3_TOP_ASSY SIZE . A SHEET 3 OF 3

Bladder & Key Technology

10,000psi Air-driven Pump For Large-scale Magnet Bladders

10,000psi Hand-Operated Pump For Subscale Magnet Bladders

Bladder & Key Technology

- · BLADDERS
 - 2 Sheets, 0.25mm thick 304 SStl
 - Laser welded
 - 0.125" OD Hi-press feed tube

184.1 x 875.8 mm⁻ [7.25" x 34.5"]

Pressurizing Bladders to 69 MPa [10,000 psi]:

- TEST COUPON
 - 0.27 MN [60,400 lbs]
- SUB-SCALE LOADING STRUCTURE
 - 1.27 MN [283,000 lbs]
- AUXILLIARY BLADDER, FULL SCALE LOADING STRUCTURE
 - 2.75 MN [618,000 lbs]
- MAIN BLADDER, FULL SCALE LOADING STRUCTURE
 - 11.1 MN [2,500,000 lbs]

45.5 x 875.8 mm⁻ [1.8" x 34.5"]

60.3 x 304.8 mm⁻¹ [2.38" x 12.0"]

25.4 x 152.4 mm²

RD-series, 1-Axis Bladder & Key Technology

SCALE : 3/50 TYPE : ASSEM NAME : RD3C_MAG_STRUCTURE SIZE : C

BERKELEY LAB

Superconducting Magnet Program

HD-1, 2-Axis Bladder & Key Technology

RD-3 Aluminum Cylindrical Shell 740mm [29.13"] OD x 42.0mm [1.65"] wall

HD-1 Aluminum Cylindrical Shell 436mm [17.18"] OD x 17.5mm [.69"] wall

Conceptual Design of HD-1 Dedicated Loading Structure

HD-1 in RD-series Loading Structure

BERKELEY LAB

Superconducting Magnet
Program

ANSYS 3-D Analysis of HD-1

HD-1, 3-Axis Loading

HD-1 top assembly, Lead End

HD-1 Z-Load Tie-Rods